How a speedometer works

Inside a mechanical speedometer Drivecable Flexibletube Hairspring Needle Milometer Dial Metaldrum Magnet

Inside a mechanical speedometer

A flexible drive cable inside a flexible tube links a small magnet inside the speedometer to the gearbox output shaft.

The magnet rotates with the shaft and its magnetic field attracts a metal drum to turn the speedometer needle against the force of a hair spring. The needle moves round the dial until the restraining force of the hair spring brings it to rest to give a reading of the road speed.

Of all the instruments you can find on a modern car dashboard, only one is a legal requirement - the speedometer and its built-in milometer (also called an odometer).

In common with other developments in car technology, the trend is now towards using electronics in speedometers. But most cars - even ones being built today - have a mechanical speedometer, usually with a needle and calibrated dial to show the speed. The design of this type of speedometer has hardly changed in the last 50 years.

Operation

Mechanical speedometers measure the speed of a car by being linked mechanically with the gearbox output shaft. Since this shaft lies 'downstream' of the gearbox, the speed with which it rotates is independent of gear changes and so gives a true measure of the road speed.

Gearbox output shaft.

Inside the gearbox, the output shaft contains a gear wheel which rotates with the shaft. Linked to this gear wheel, and driven by it, is a small pinion gear, the speedometer chive pinion, which links in turn to the speedometer cable that runs up to the speedometer itself.

The speedo cable consists of an inner cable running inside a protective outer sheath. The ends of the speedometer inner cable are squared off, and fit into squared holes in the drive pinion at the gearbox and the drive in the back of the speedometer. As the pinion rotates, driven by the gearbox output shaft, it causes the inner cable to rotate with it.

The other end of the cable fits to a drive shaft leading into the speedometer. On the end of this shaft is a magnet. Positioned close to (but not touching) the magnet is a cup-shaped metal drum that is attached to the needle giving the reading on the dial. A small coiled hair spring holds the needle at zero.

Needle Dial

Needle

The magnet causes a needle to move round a circular dial.

The drum is attracted by the magnet so, as the magnet turns, the drum turns too. The faster the car is travelling, the greater the pull of the magnet on the metal drum and the further the needle moves round the dial. But the restraining force of the hair spring also increases as the needle moves round the dial. At a certain point the forces of the spring and the magnet balance out and the needle steadies to give a reading.

Variations

The two other common types of mechanical speedometer give the reading by a bar or a mark moving along a straight calibrated scale.

Both are roughly similar in operation to the round dial type of speedometer - a cable driven by the gearbox output shaft turns a magnet which causes some sort of indicator to move against the force of a restraining hair spring.

Ribbon Hairspring Spool Scale Coloredribbon

Ribbon

The magnet causes a ribbon to reel off one spool and on to the other. A mark on the ribbon measures the speed against a straight scale.

In one type the indicator consists of a moving ribbon attached at each end to a spool. The magnet causes the ribbon to reel off one spool to the other against the force of the hair spring. As the ribbon moves, a mark on it lines up with the calibrated scale to give a reading.

Drum Coloreddrum Hairspring Scale

Drum

The magnet causes a drum to rotate. As it does so, a mark on the drum lines up with a straight scale to indicate road speed.

The other type of indicator using a straight scale rather than a dial has a barrel marked with a line. The magnet causes the barrel to rotate until stopped by the hair spring. Again, as the barrel moves, the mark on it lines up with the scale to indicate the speed.

On both these types of speedometer the ribbon or barrel is usually a different colour on each side of the marker line to make the speed easier for the driver to read.

Electronic speedos

In common with the trend towards electronic dashboard instruments, electronic speedometers are now becoming much more popular, even though mechanical ones are generally reliable.

The most common type has a magnet attached to the gearbox output shaft and an electronic unit positioned close by to act as a pickup. Every time the rotating magnet passes the pick-up unit, the unit sends a pulse of electric current down a wire to the speedometer. An electronic 'black box' inside the speedo uses these impulses to calculate the speed of the car.

We also have this article in

The ultimate video course

We take this car to pieces and then build it again, explaining how every single part works.

By the time you finish watching this, you'll understand everything inside a car.

Watch us take a Mazda MX5 Miata to pieces, and then build it back together again into a modern working car.

  • Every part explained in detail.
  • We've created the most detailed 3D model ever produced so we can show you everything working.
  • Over 20 hours of footage — see the contents.
  • Preorder and download the How a Car Works PDF for free.
  • Support the video by preordering and we'll put your name in the credits.

This will be the most in-depth course on car mechanics ever produced. Pre-order your copy now and save 75%.

Preorder for $20
Normal price $80. Pre-release in July 2017.

Read more essential guides

Installing a cigarette lighter socket

Although you may not smoke, fitting a cigarette lighter inside your car could be more useful tha...

Fitting a new speedometer cable

Speedometer failure is likely to be caused by a fault in the cable that runs from the gearbox to...

How to fix an indicator stalk

The majority of indicator stalks are mounted on the side of the steering column so you can easil...

Dashboard technology

This article is from the mid-1980s. It is out-of-date but still interesting. Twenty-five years ag...